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Abstract

This paper contains an analysis of the stress distribution in a long circular cylinder of isotropic elastic material with a

circumferential edge crack when it is deformed by the application of a uniform shearing stress. The crack with its center

on the axis of the cylinder lies on the plane perpendicular to that axis, and the cylindrical surface is stress-free. By

making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair

of singular integral equations. This pair of singular integral equations is solved numerically, and the stress intensity

factor due to the effect of the crack size is tabulated. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Problem of determining the distribution of stress in a long circular cylinder containing a penny-shaped
crack has been investigated by relatively many writers. We can list works by Collins (1962), Sneddon and
Tait (1963), Sneddon and Welch (1963), Tchuchida and Uchiyama (1980), Dhaliwal et al. (1979), Ban and
Zhang (1992), Loboda and Sheveleva (1995), and Wang (1996).

However, solutions to the problem concerning an edge circumferential crack in a long circular cylinder
are relatively few. Keer et al. (1977) considered an infinitely long isotropic circular cylinder with a cir-
cumferential edge crack subjected to tension, whereas Atsumi and Shindo (1979) considered the same
problem when the cylinder is of transversely isotropic material. All of these investigations concerned with
axisymmetric problems, however, little attention seems to be given to the asymmetric analysis concerning a
long circular cylinder. The recent analyses by Lee (1997, 1999) investigated the asymmetric problems in-
volving a long cylinder.

In this paper we derive the solution of the problem determining the distribution of stress in a long
circular cylinder of elastic material (Fig. 1), whose surface is stress-free, when it is deformed by the ap-
plication of the shearing stress at the end of the cylinder which contains a circumferential edge crack
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situated with its center on the axis of the cylinder and its plane perpendicular to that axis. An analogous
problem concerning a penny-shaped crack has been considered by the present author (Lee, 2001).

Radial shear problem has been considered in Kassir and Sih (1975) for the infinite elastic medium and by
Danyluk et al. (1991) for the cylinder of finite radius of transversely isotropic medium. Such radial shear
would, in real life situation, be difficult to realize, whereas the uniform shear problem such as the present
one can be examined experimentally fairly easily.

In Section 2 general equations and formulation of the problem are given, and in Sections 3 and 4 by the
use of the stress and displacement fields, and employing Fourier transform, a pair of singular integral
equations is derived. And finally, a numerical example is given and quantities of physical interest are
obtained.

2. General equation

Consider a circular cylinder of the radius c having a circumferential edge crack whose inner radius is
equal to a. We take the center of the crack as the origin of the cylindrical coordinates, ðr; h; zÞ and the axis
of the cylinder to be z-axis. The central plane of the crack is taken to lie on the plane z ¼ 0. Suppose that the
cylinder is subjected to a constant shearing stress at the end. By introducing an appropriate function, we
can convert the problem to a mixed boundary value problem where the crack is subjected to a uniform
shearing stress while all stresses at the ends vanish. For instance, taking w ¼ Crz in (2.10) in the subsequent
page, we see that this function produces no stresses except uniform shear stresses. Adding this function to
the potential function leads us to the goal.

Fig. 1. A long circular cylinder with circumferential edge crack subjected uniform shearing stress.
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It is considered on the surface z ¼ 0, the crack is subjected to a uniform shearing stress S in the h ¼ p-
direction. Interior to the circle the surface displacements u; v are zero; the surface z ¼ 0 is assumed to be free
from normal tractions. Then the problem determining the distribution of stress in the vicinity of the crack is
equivalent to that of finding the distribution of stress in the semi-infinite cylinder zP 0, 06 r6 1. The
boundary conditions for the present problem can be mathematically stated as follows:

On z ¼ 0: srz ¼ S cos h; a < r6 1; ð2:1Þ
shz ¼ �S sin h; a < r6 1; ð2:2Þ
rz ¼ 0; 06 r6 1; ð2:3Þ
u ¼ 0; 06 r < a; ð2:4Þ
v ¼ 0; 06 r < a; ð2:5Þ

On r ¼ 1: srz ¼ 0; ð2:6Þ
srh ¼ 0; ð2:7Þ
rr ¼ 0: ð2:8Þ

If we introduce biharmonic and harmonic functions U, and w, so that

r4U ¼ r2w ¼ 0;

then the needed components of the displacement vector in terms of them are expressed by the equation
from Muki (1960, p. 403)

u ¼ � o2U
oroz

þ 2

r
ow
oh

;

v ¼ � o2U
rohoz

� 2
ow
or

;

ð2:9Þ

and the stress field is given by the equations,

rr
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� o2w
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:

ð2:10Þ

where l is the modulus of rigidity, and m is Poisson’s ratio. In addition to (2.9) and (2.10), for the solution of
the present problem we need more expressions for the displacements and stresses. This can be obtained
from Lee (2001).
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The displacement vector is found as

u ¼ �2ð1� mÞ oðf þ gÞ
oz

cos h þ z
oF
or

;

v ¼ �2ð1� mÞ oðg � f Þ
oz

sin h þ z
1

r
oF
oh

;

w ¼ �ð1� 2mÞF þ z
oF
or

;

ð2:11Þ

where f ðr; zÞ satisfies

o2f
or2

þ 1

r
of
or

þ o2f
oz2

¼ 0 ð2:12Þ

and gðr; zÞ satisfies

o2g
or2

þ 1

r
og
or

� 4

r2
g þ o2g

oz2
¼ 0 ð2:13Þ

and

F ¼ of
or

�
þ og

or
þ 2g

r

�
cos h; r2F ¼ 0:

The components of stress tensor are

rr
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oz2

cos h þ m
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r
oF
oh

þ z
1
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o2F
ohoz

:

ð2:14Þ

3. Derivation of integral equations

In this section we derive a pair of singular integral equations. For this purpose we use the displacement
vector obtained by adding (2.9) and (2.11). For the stress field we add (2.10) and (2.14). Suitable functions
for f , g, U, and w are chosen to be

f ðr; zÞ ¼ 1

2l

Z 1

0

n�1aðnÞJ0ðnrÞe�nz dn; ð3:1Þ

gðr; zÞ ¼ 1

2l

Z 1

0

n�1bðnÞJ2ðnrÞe�nz dn; ð3:2Þ

Uðr; h; zÞ ¼ 1

2l

Z 1

0

fAðnÞrI2ðnrÞ þ BðnÞI1ðnrÞg cos nzdn cos h; ð3:3Þ
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wðr; h; zÞ ¼ 1

2l

Z 1

0

CðnÞI1ðnrÞ sin nzdn sin h; ð3:4Þ

where J0, J2 are the Bessel function of the first kind and I1, I2 are the modified Bessel functions of the first
kind. With these choice of functions, we see that condition (2.3) is automatically satisfied.

On z ¼ 0, we have

u
cos h

¼ 1� m
l

Z 1

0

faðnÞJ0ðnrÞ þ bðnÞJ2ðnrÞgdn; ð3:5Þ

and, we also have

v
sin h

¼ 1� m
l

Z 1

0

f�aðnÞJ0ðnrÞ þ bðnÞJ2ðnrÞgdn: ð3:6Þ

If one defines

� l
2ð1� mÞ

o

or
u

cos h

�
� v
sin h

�
¼ r�1gðrÞ; a < r6 1

0; 06 r6 a

�
ð3:7Þ

then aðnÞ is determined as

aðnÞ ¼
Z 1

a
gðtÞJ1ðntÞdt; ð3:8Þ

Similarly, if one defines

l
2ð1� mÞ

o

or
r2

u
cos h

�n
þ v
sin h

�o
¼ rhðrÞ; a < r6 1

0; 06 r6 a

�
ð3:9Þ

then bðnÞ is determined as

bðnÞ ¼
Z 1

a
hðtÞJ1ðntÞdt; ð3:10Þ

Now srz on z ¼ 0 is

srz
cos h

¼ �
Z 1

0

nfaðnÞJ0ðnrÞ þ bðnÞJ2ðnrÞgdn þ m
r

Z 1

0

faðnÞ þ bðnÞgJ1ðnrÞdn

þ
Z 1

0

n2 AðnÞ 2ð1� mÞ
nr

��

þ nr

�
I1ðnrÞ þ ð1� 2mÞI2ðnrÞ

�

þ BðnÞn I2ðnrÞ
�

þ 1

nr
I1ðnrÞ

�
þ CðnÞ 1

nr
I1ðnrÞ

�
dn ¼ S; a < r6 1: ð3:11Þ

If we use (3.8) and (3.10) in (3.11), we obtain following singular integral equation for determining gðtÞ and
hðtÞ:
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2

p

Z 1

a
fgðtÞ � hðtÞgRðr; tÞdt þ m

r

Z 1

a
gðtÞH11ðr; tÞdt þ

ðm � 2Þ
r
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a
hðtÞH11ðr; tÞdt

þ
Z 1

0
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��
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�
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�
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�
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�
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where

Rðr; tÞ ¼
1

r2�t2 EðrtÞ; r < t;
r
t

1
r2�t2 EðtrÞ � 1

rt KðtrÞ; r > t:

(
ð3:13Þ

(Here K and E are complete elliptic integrals of the first and second kind, respectively) and H11ðr; tÞ is
defined by

H11ðr; tÞ ¼
R1
0

J1ðnrÞJ1ðntÞdn

¼
t

2r2 2F1
3
2
; 1
2
; 2; t

2

r2

� �
¼ 2

pt K t
r

� �
� E t

r

� �� �
; t < r;

r
2t2 2F1

3
2
; 1
2
; 2; r

2

t2

� �
¼ 2

pr K r
t

� �
� E r

t

� �� �
; r < t:

8><
>:

ð3:14Þ

Similarly from (2.2), we have now shz on z ¼ 0 as follows:

shz

sin h
¼ �ð1� mÞ

Z 1

0

nf�aðnÞJ0ðnrÞ þ bðnÞJ2ðnrÞgdn � m
r

Z 1

0

f�aðnÞ þ bðnÞgJ1ðnrÞdn

� 1

r

Z 1

0

n½AðnÞf2ð1� mÞI1ðnrÞ þ nrI2ðnrÞg þ BðnÞnI1ðnrÞ þ CðnÞfnrI2ðnrÞ þ I1ðnrÞg�dn ¼ �S; a < r6 1:

ð3:15Þ

If we substitute (3.8) and (3.10) for a and b into (3.15) we obtain another singular integral equation for
determining gðtÞ and hðtÞ:

� ð1� mÞ 2
p

Z 1

a
fgðtÞ þ hðtÞgRðr; tÞdt þ m

r

Z 1

a
gðtÞH11ðr; tÞdt þ

ðm � 2Þ
r

Z 1

a
hðtÞH11ðr; tÞ

� 1

r

Z 1

0

n½AðnÞf2ð1� mÞI1ðnrÞ þ nrI2ðnrÞg þ BðnÞnI1ðnrÞ þ CðnÞfnrI2ðnrÞ þ I1ðnrÞg�dn ¼ �S; a < r6 1:

ð3:16Þ

Substituting (3.8) and (3.10) into (3.5) and (3.6) and using condition (2.4) and (2.5), the following additional
condition is obtained.Z 1

a
t�1gðtÞdt ¼ 0: ð3:17Þ

4. Conditions on the surface of the cylinder

We now complete the solution by satisfying the boundary conditions on the surface of the cylinder. It is
easily shown that the value of srz on the surface r ¼ 1 is given by the equation
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srzð1; h; zÞ
cos h

¼
Z 1

0

n2½f2ð1� mÞI 01ðnÞ þ nI1ðnÞ � I2ðnÞgAðnÞ þ nI 01ðnÞBðnÞ þ
1

n
I1ðnÞCðnÞ� cos nzdn

þ
Z 1

0

½aðgÞf�gJ0ðgÞ þ mJ1ðgÞ þ zg2J 0
1ðgÞg þ bðgÞf�gJ2ðgÞ þ mJ1ðgÞ � zg2J 0

1ðgÞg�e�gz dg:

ð4:1Þ
Boundary condition (2.6) can be written in an alternative form as

Fc½srzð1; h; zÞ; z ! n� ¼ 0: ð4:2Þ

From which, we obtain

f2ð1� mÞI 01ðnÞ þ nI1ðnÞ � I2ðnÞgAðnÞ þ nI 01ðnÞBðnÞ þ
1

n
I1ðnÞCðnÞ

¼ � 2

p

Z 1

0

aðgÞ ðm � 1Þ
n2

gJ1ðgÞ
n2 þ g2

("
� 2

g2J0ðgÞ
ðn2 þ g2Þ2

þ 2
gJ1ðgÞ

ðn2 þ g2Þ2

)

þ bðgÞ
(

� 2
g2J2ðgÞ

ðn2 þ g2Þ2
þ ðm � 1Þ

n2

gJ1ðgÞ
n2 þ g2

þ 2
gJ1ðgÞ

ðn2 þ g2Þ2

)#
dg: ð4:3Þ

Therefore if we substitute aðgÞ and bðgÞ from (3.8) and (3.10) into (4.3) and make use of formulae in
Appendix which are obtained from Erd�eelyi et al. (1954), we obtain one equation connecting AðnÞ, BðnÞ,
CðnÞ and gðtÞ, hðtÞ,

fð2ð1� mÞ þ n2ÞI1ðnÞ þ ð1� 2mÞnI2ðnÞgAðnÞ þ nfI1ðnÞ þ nI2ðnÞgBðnÞ þ I1ðnÞCðnÞ
¼ �fðn2 þ mþ 1ÞK1ðnÞ � nK2ðnÞgiðnÞ þ f�K1ðnÞ þ nK2ðnÞgjðnÞ þ fð3� mþ n2ÞK1ðnÞ � nK2ðnÞgkðnÞ;

ð4:4Þ

where

iðnÞ ¼ 2

pn

Z 1

a
gðtÞI1ðntÞdt;

jðnÞ ¼ 2

pn

Z 1

a
fgðtÞ � hðtÞgntI2ðntÞdt;

kðnÞ ¼ 2

pn

Z 1

a
hðtÞI1ðntÞdt:

ð4:5Þ

Next, srh on the surface r ¼ 1 is given by the equation

srhð1; h; zÞ
sin h

¼
Z 1

0

n2½�I 02ðnÞAðnÞ � I2ðnÞBðnÞ þ
�
� I1ðnÞ þ

2

n
I2ðnÞ

�
CðnÞ� sin nzdn

þ
Z 1

0

½aðgÞfð1� mÞgJ1ðgÞ � zgJ2ðgÞg þ bðgÞfð1� mÞ½gJ1ðgÞ � 4J2ðgÞ� þ zgJ2ðgÞg�e�gz dg:

ð4:6Þ

The boundary condition (2.7) can be written as

Fs½srhð1; h; zÞ; z ! n� ¼ 0: ð4:7Þ
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From which we obtain�
� I1ðnÞ þ

2

n
I2ðnÞ

�
AðnÞ � I2ðnÞBðnÞ þ

�
� I1ðnÞ þ

2

n
I2ðnÞ

�
CðnÞ

¼ � 2

p

Z 1

0

aðgÞ ð1� mÞ
n

gJ1ðgÞ
n2 þ g2

("
� 2

n
g2J2ðgÞ

ðn2 þ g2Þ2

)
þ bðgÞ ½gJ1ðgÞ

(
� 4J2ðgÞ�

1� m

nðn2 þ g2Þ

þ 2

n
g2J2ðgÞ

ðn2 þ g2Þ2

)#
dg ð4:8Þ

If we substitute from (3.8) and (3.10) into (4.8) and make use of equations in the Appendix, we obtain

f�nI1ðnÞ þ 2I2ðnÞgAðnÞ � nI2ðnÞBðnÞ þ f�nI1ðnÞ þ 2I2ðnÞgCðnÞ
¼ mnK1ðnÞiðnÞ � K2ðnÞjðnÞ � fð2� mÞnK1ðnÞ þ 4ð1� mÞK2ðnÞgkðnÞ: ð4:9Þ

Finally, rr on the surface r ¼ 1 is given by the equation

rr

cos h
¼ �

Z 1

0

n2 ð2m
�


� 1ÞI1ðnÞ � n

�
þ 2

n

�
I2ðnÞ

�
AðnÞ � nI 001 ðnÞBðnÞ �

2

n
I2ðnÞCðnÞ

�
sin nzdn

þ
Z 1

0

½aðgÞf�2gJ1ðgÞ � z½�g2J1ðgÞ þ gJ2ðgÞ�g

þ bðgÞf2gJ1ðgÞ � 4ð1� mÞJ2ðgÞ þ z½�g2J1ðgÞ þ gJ2ðgÞ�g�e�gz dg: ð4:10Þ

Boundary condition (2.7) can be written in an alternative form as

Fs½rrð1; h; zÞ; z ! n� ¼ 0: ð4:11Þ
From which we obtain

ð2m
�

� 1ÞI1ðnÞ � n

�
þ 2

n

�
I2ðnÞ

�
AðnÞ � nI 001 ðnÞBðnÞ �

2

n
I2ðnÞCðnÞ

¼ 2

p

Z 1

0

aðgÞ
("

� 2n
gJ1ðgÞ

ðn2 þ g2Þ2
� 2

n
g2J2ðgÞ

ðn2 þ g2Þ2

)
þ bðgÞ 2n

gJ1ðgÞ
ðn2 þ g2Þ2

(
� 4ð1� mÞ

n
J2ðgÞ

n2 þ g2

þ 2

n
g2J2ðgÞ

ðn2 þ g2Þ2

)#
dg: ð4:12Þ

If we substitute from (3.8) and (3.10) into (4.12) and make use of equations in the Appendix and their
derivatives, we obtain

fð2m � 1ÞnI1ðnÞ � ðn2 þ 2ÞI2ðnÞgAðnÞ � nfnI1ðnÞ � I2ðnÞgBðnÞ � 2I2ðnÞCðnÞ
¼ nfK1ðnÞ � nK2ðnÞgiðnÞ þ fnK1ðnÞ þ K2ðnÞgjðnÞ � fnK1ðnÞ � ð4ð1� mÞ þ n2ÞK2ðnÞgkðnÞ: ð4:13Þ

Now, if we solve (4.4), (4.9) and (4.13) simultaneously for unknowns AðnÞ, BðnÞ, and CðnÞ, we find that

AðnÞ ¼


� K1

I1
þ I2n

I1n � 2I2
DðnÞ

�
iðnÞ � I1ðnI1 � 2I2Þ

DðnÞ jðnÞ þ K1

I1



� 1

DðnÞ I1I2ðn2
�

þ 4ð1� mÞÞ � 2nI22
��

kðnÞ;

ð4:14Þ

where I1 ¼ I1ðnÞ, I2 ¼ I2ðnÞ, K1 ¼ K1ðnÞ and

DðnÞ ¼ nI1½4nI21 I2 þ I1I22fn
2 � 2ð1þ mÞg � 2nI32 � n2I31 �
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and

nBðnÞ ¼


� K1

I1
2m þ n

DðnÞ f � I21n
2 þ I1I22ð1þ mÞn � 4mI22g

�
iðnÞ

þ


� K1

I1
þ I21 2ð1� mÞn þ I1I2ð2m � 2þ n2Þ � 2nI22

DðnÞ

�
jðnÞ

þ 2m
K1

I1



þ 1

DðnÞ nI21 ½4ð1
�

� mÞ þ n2� � I1I2f2ð1þ mÞn2 þ 8mð1� mÞg þ 4mnI22
��

kðnÞ; ð4:15Þ

and

CðnÞ ¼ ð1� mÞ K1

I1

�

þ 2nI22

DðnÞ

�
iðnÞ � 2I1I2

DðnÞ jðnÞ þ
K1

I1

�
þ 1

DðnÞ ð8I1I2 � 4nI21 þ 2nI22 Þ
�
kðnÞ

�
; ð4:16Þ

In obtaining (4.14)–(4.16), we used the equation

K2ðnÞI1ðnÞ þ K1ðnÞI2ðnÞ ¼
1

n
:

Therefore, if we substitute AðnÞ, BðnÞ and CðnÞ from (4.14)–(4.16) into (3.12), we finally obtain following
singular integral equation

2

p

Z 1

a
fgðtÞ � hðtÞgRðr; tÞdt þ

Z 1

a
gðtÞ m

r
H11ðr; tÞ

n
þ K1ðr; tÞ

o
dt

þ
Z 1

a
hðtÞ m � 2

r
H11ðr; tÞ

�
þ K2ðr; tÞ

�
dt ¼ S; a < r6 1: ð4:17Þ

Similarly from (3.16), we obtain another singular integral equation for determining gðtÞ and hðtÞ:

� ð1� mÞ 2
p

Z 1

a
fgðtÞ þ hðtÞgRðr; tÞdt þ

Z 1

a
gðtÞ m

r
H11ðr; tÞ

n
� K3ðr; tÞ

o
dt

þ
Z 1

a
hðtÞ ðm � 2Þ

r
H11ðr; tÞ



� K4ðr; tÞ

�
dt ¼ �S; a < r6 1: ð4:18Þ

The detailed expressions of kernels Kiðr; tÞði ¼ 1; . . . ; 4Þ are listed in the Appendix.
The problem is now reduced to the solution of (4.17) and (4.18) under the additional condition (3.17)

which is a trivial condition for the result to be determined because it merely refers to the rigid displacement
of u and v.

Quantities which are of interest in fracture mechanics are the stress intensity factors defined by the
relations

k2 ¼ lim
r!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� rÞ

p
srzðr; h; 0Þ; ð4:19Þ

k3 ¼ lim
r!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� rÞ

p
shzðr; h; 0Þ: ð4:20Þ

We let

r ¼ d
2
ðs� 1Þ þ 1; t ¼ d

2
ðs � 1Þ þ 1; ð4:21Þ
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where d ¼ 1� a, and in order to facilitate numerical analysis, assume gðtÞ and hðtÞ to have the following
form:

gðtÞ ¼ S

ffiffiffiffiffiffiffiffiffiffi
1� t
t � a

r
GðtÞ; hðtÞ ¼ S

ffiffiffiffiffiffiffiffiffiffi
1� t
t � a

r
HðtÞ: ð4:22Þ

With the aid of (4.21), gðsÞ and hðsÞ can be rewritten as

gðsÞ ¼ SGðsÞ 1� s
1þ s

� �1
2

; hðsÞ ¼ SHðsÞ 1� s
1þ s

� �1
2

: ð4:23Þ

The stress intensity factors k2 and k3 can therefore be expressed in terms of GðtÞ and HðtÞ as

k2 ¼
ffiffiffiffiffiffi
2d

p
fGðaÞ � HðaÞgS cos h=a; ð4:24Þ

k3 ¼ �
ffiffiffiffiffiffi
2d

p
ð1� mÞfGðaÞ þ HðaÞgS sin h=a: ð4:25Þ

Crack opening displacements, given by integration of (3.7) and (3.9) are

l
1� m

uðr; h; 0Þ
cos h

¼ �
Z r

a
t�1gðtÞdt þ 1

r2

Z r

a
thðtÞdt; a < r < 1;

l
1� m

vðr; h; 0Þ
sin h

¼
Z r

a
t�1gðtÞdt þ 1

r2

Z r

a
thðtÞdt; a < r < 1:

5. Numerical analysis

In order to obtain numerical solutions of (4.17) and (4.18), substitutions are made by the application of
(4.21) and (4.23) to obtain equations of following forms

d
p

Z 1

�1

1� s
1þ s

� �1
2

½GðsÞPiðs; sÞ þ HðsÞQiðs; sÞ�ds ¼ 1; �1 < s < 1 ði ¼ 1; 2Þ: ð5:1Þ

The numerical solution technique is based on the collocation scheme for the solution of singular integral
equations given by Erdogan et al. (1973). This amounts to applying a Gaussian quadrature formula for
approximating the integral of a function f ðsÞ with weight function ½ð1� sÞ=ð1þ sÞ�1=2 on the interval
½�1; 1�. Thus, letting n be the number of quadrature points,Z 1

�1

1� s
1þ s

� �1
2

f ðsÞds+
2p

2nþ 1

Xn

k¼1

ð1� skÞf ðskÞ; ð5:2Þ

where

sk ¼ cos
2kp

2nþ 1

� �
; k ¼ 1; . . . ; n: ð5:3Þ

The solution of the integral equation is obtained by choosing the collocation points:

si ¼ cos
2i� 1

2nþ 1

� �
p; i ¼ 1; . . . ; n ð5:4Þ

and solving the matrix system for G�ðskÞ and H �ðskÞ:Xn

k¼1

½G�ðskÞPiðsj; skÞ þ H �ðskÞQiðsj; skÞ� ¼
2nþ 1

2d
; j ¼ 1; . . . ; n ði ¼ 1; 2Þ; ð5:5Þ
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where

G�ðskÞ ¼ GðskÞð1� skÞ; H �ðskÞ ¼ HðskÞð1� skÞ: ð5:6Þ

It can be shown that as both r, t approach 1, the kernels Kiðr; tÞ, ði ¼ 1; 4Þ in (4.17) and (4.18) become
unbounded and hence influence the singular nature of the solution. Thus, if Kiðr; tÞ in Appendix B are, for
the brevity of notation, written as

Kiðr; tÞ ¼
2

p

Z 1

0

kiðn; r; tÞdn ði ¼ 1; . . . ; 4Þ;

the unbounded terms in Kiðr; tÞ will be the consequence of the asymptotic behavior of kiðn; r; tÞ for n ! 1.
Thus, subtracting and adding the asymptotic value of kiðn; r; tÞ from and to the integrand in the above

equation, we have

Kiðr; tÞ ¼
2

p

Z 1

0

fkiðn; r; tÞ � A�
i ðn; r; tÞgdn þ 2

p

Z 1

0

A�
i ðn; r; tÞdn; ð5:7Þ

where

A�
i ðn; r; tÞ ¼

e�nð2�r�tÞffiffiffiffi
rt

p faiðr; tÞn2 þ biðr; tÞn þ ciðr; tÞg; ð5:8Þ

and

Z 1

0

A�
i ðn; r; tÞdn ¼ 1ffiffiffiffi

rt
p 2ai

ð2� r � tÞ3

(
þ bi

ð2� r � tÞ2
þ ci
ð2� r � tÞ

)
: ð5:9Þ

The form of ai, bi, and ciði ¼ 1; . . . ; 4Þ comes from the leading terms in the asymptotic expansion of
kiðn; r; tÞ and these are listed in Appendix C. Three terms are retained in the asymptotic forms of the Bessel
functions which are used to obtain these values. It is quite onerous work to produce these values. Math-
ematica is used for this job.

We list in Table 1, the results of subtracting none, one, two, or three of the leading terms in the
asymptotic form of the integral. Here we only consider the semi-infinite integral in K1ðr; tÞ. The values of
r, and t shown here are those of the nearest values to 1 used in the evaluation of the integral.

If d approaches to zero, from the asymptotic expansions of Kiðr; tÞ in Appendix C, (4.17) and (4.18)
reduce to the following pair of decoupled singular integral equations.

1

p

Z 1

�1

fgðsÞ � hðsÞg 1

s� s

(
þ s � s

ð2� s � sÞ2
þ 4ð1� sÞð1� sÞ

ð2� s � sÞ3

)
ds ¼ S; ð5:10Þ

� ð1� mÞ
p

Z 1

�1

fgðsÞ þ hðsÞg 1

s� s

�
þ 1

2� s � s

�
ds ¼ �S: ð5:11Þ

Table 1

Sample behavior of semi-infinite integral evaluation when none, one, two, or three of the leading terms in the asymptotic form of

integrand in K1ðr; tÞ are subtracted. r ¼ 0:9999853, and t ¼ 0:9959520 are the values to produce these data

Zero-term One-term Two-term Three-term

Asymptotic part 0 1.7739 �122.4279 �120.9037

Gaussian quadrature 0.3323 2.1062 �121.5591 �120.0116
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Eqs. (5.10) and (5.11) are exactly the solutions of the edge crack problem of a half space for xP 0, when the
edge crack occupying 0 < x < 1, �1 < y < 1 on the plane z ¼ 0 is subjected to the shearing stress while
the plane boundary x ¼ 0 is stress free. Each equation gives 1.122 and �0.9996 for SIF.

In Table 2 stress intensity factor is listed for m ¼ 0:3. We list only for m ¼ 0:3 here, because the variation
of SIF with respect to m is very small. We compare SIF with that by Keer et al. (1977) for the cylinder
subjected to tension. From these values we notice that the K values when the cylinder is subjected shear
stresses do not differ very much from the values for the uniform tension. Also we notice that the results for
d ! 0 are in excellent agreement with the analytically obtained limiting value of 1.122.

Figs. 2 and 3 show the crack opening displacements defined by

d1ðrÞ ¼ �
Z r

a
GðtÞð1� tÞ1=2ðt � aÞ�1=2t�1dt þ 1

r2

Z r

a
HðtÞð1� tÞ1=2ðt � aÞ�1=2tdt ¼ uðr; h; 0Þ

cos h
l

ð1� mÞS ;

d2ðrÞ ¼
Z r

a
GðtÞð1� tÞ1=2ðt � aÞ�1=2t�1dt þ 1

r2

Z r

a
HðtÞð1� tÞ1=2ðt � aÞ�1=2tdt ¼ vðr; h; 0Þ

sin h
l

ð1� mÞS :

for the crack depths d ¼ 1� a of 0:9; . . . ; 0:1. The maximal displacements dð1Þ are given in Table 3.

Table 2

Stress intensity factor (m ¼ 0:3)

d j2=
ffiffiffi
d

p
j3=

ffiffiffi
d

p
Keer et al.

0.001 1.1225 �1.0017 1.1224

0.05 1.1367 �1.0569 1.1513

0.1 1.1619 �1.1053 1.1807

0.2 1.2452 �1.2133 1.2608

0.3 1.3806 �1.3604 1.3904

0.4 1.591 �1.577 1.597

0.5 1.924 �1.916 1.932

0.6 2.487 �2.482 2.502

0.7 3.554 �3.551 3.598

0.8 6.063 �6.062 6.201

0.9 15.772 �15.771 16.46

Where j2 ¼ k2=S cos h, j3 ¼ k3=S sin h.

Fig. 2. Crack opening displacement (m ¼ 0:3).
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6. Conclusion

In this paper, the problem of determining the distribution of stress in a circumferentially edge cracked
circular cylinder which is subjected to uniform shearing stress is considered. This problem does not appear
to be investigated previously. As a consequence we were unable to compare the numerical results with any
published accounts.

However, comparing present results with the values for uniform tension, we see that the two values are
very close. Notifying that the stress intensity factors for the semi-infinite plate with an edge crack are
identical for uniform tension and shear stress, we believe that the present results are accurate.

The present analysis can be applied to the stress analysis of cranks, axles, and even pillars or supporters
of architectural structures when there are frequent seismic activities.

Appendix A

Z 1

0

gJ1ðgtÞJ1ðgÞ
n2 þ g2

dg ¼ I1ðntÞK1ðnÞ; t < 1;

Z 1

0

J1ðgtÞJ2ðgÞ
n2 þ g2

dg ¼ �n�1I1ðntÞK2ðnÞ; t < 1;

Z 1

0

g2J1ðgtÞJ0ðgÞ
ðn2 þ g2Þ2

dg ¼ 1

2n
fntI0ðntÞK0ðnÞ � nI1ðntÞK1ðnÞg; t < 1;

Z 1

0

gJ1ðgtÞJ1ðgÞ
ðn2 þ g2Þ2

dg ¼ � 1

2n2
½ntI2ðntÞK1ðnÞ � nI1ðntÞK0ðnÞ�; t < 1;

Table 3

Maximal crack opening displacement for different crack depth ðm ¼ 0:3Þ
d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d1ðrÞ �0.150 �0.316 �0.512 �0.756 �1.080 �1.547 �2.297 �3.744 �7.847

d2ðrÞ 0.157 0.337 0.547 0.804 1.140 1.616 2.374 3.828 7.937

Fig. 3. Crack opening displacement (m ¼ 0:3).
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Z 1

0

g2J1ðgtÞJ2ðgÞ
ðn2 þ g2Þ2

dg ¼ � 1

2n
½ntI2ðntÞK2ðnÞ � I1ðntÞnK1ðnÞ�; t < 1:

Appendix B

K1ðr; tÞ ¼
2

p

Z 1

0

nfI1ðntÞp1ðr; nÞ þ ntI2ðntÞp2ðr; nÞgdn;

K2ðr; tÞ ¼
2

p

Z 1

0

nfI1ðntÞp3ðr; nÞ � ntI2ðntÞp2ðr; nÞgdn;

K3ðr; tÞ ¼
2

p

Z 1

0

nfI1ðntÞp4ðr; nÞ þ ntI2ðntÞp5ðr; nÞgdn;

K4ðr; tÞ ¼
2

p

Z 1

0

nfI1ðntÞp6ðr; nÞ � ntI2ðntÞp5ðr; nÞgdn;

where

piðr; nÞ ¼
I1ðnrÞ

nr
aiðn; rÞ þ I2ðnrÞbiðnÞ; ði ¼ 1; . . . ; 6Þ

with

a1ðn; rÞ ¼ �K1

I1
ð1þ m þ n2r2Þ þ 1

I21
þ nI2ðI1n � 2I2Þðn2r2 � nI2=I1Þ=D;

a2ðn; rÞ ¼ �K1

I1
� I1ðI1n � 2I2Þðn2r2 � nI2=I1Þ=D;

a3ðn; rÞ ¼
K1

I1
ð3� m þ n2r2Þ þ ð�4n2I1I2 þ I22 2ð3� mÞn þ I21n

3 þ n2r2f�I1I2ðn2 þ 4� 4mÞ þ 2I22ngÞ=D

and a4, a5 and a6 are obtained from a1, a2 and a3 respectively by deleting n2r2:

b1ðnÞ ¼ �K1

I1
þ ð�I21n

3 þ I1I23n
2 � 2nI22 Þ=D;

b2ðnÞ ¼ �K1

I1
þ ðI21n þ I1I2ðn2 � 2mÞ � 2nI22 Þ=D;

b3ðnÞ ¼
K1

I1
þ ðI21nð4� 4m þ n2Þ þ I1I2ð4m � 4� 3n2Þ þ 2nI22 Þ=D;

b4ðnÞ ¼ �K1

I1
m þ nI2ðI1n � 2mI2Þ=D;

b5ðnÞ ¼ �I1ðI1n � 2mI2Þ=D;

b6ðnÞ ¼
K1

I1
ð2� mÞ þ ðI21n4ðm � 1Þ þ I1I2ð4� 4m � n2Þ þ 2nð2� mÞI22 Þ=D

and D ¼ DðnÞ.
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Appendix C

A�
1ðn; r; tÞ ¼

1ffiffiffiffi
rt

p e�nð2�r�tÞ ð1



� rÞð1� tÞn2 þ 1

8

�
� 3

t
ð1� rÞð1� t2Þþ 4tð1� rÞ� ð1� tÞ 7

r

�
þ 12� 15r

��
n

þ 1

64
147

�
þ 21

rt

�
þ 57

128

1

r2

�
þ 1

t
� t

r2

�
þ 1

128

97

r

�
� 15

t2
þ 15r

t2
� 75r

t
� 195t

r

�

� 11r
8

� 19t
4

� mðr� tÞþ 141rt
32

�
1

DðnÞ ;

where

DðnÞ ¼ 1

�
� 11

2

�
� 2m

�
1

n
� 9m

�
� 2025

128

�
1

n2
� 23787

1024

�
� 63m

4

�
1

n3

�
;

A�
2ðn;r; tÞ¼

1ffiffiffiffi
rt

p e�nð2�r�tÞ


�ð1� rÞð1� tÞn2�1

8

�
�3

t
ð1� rÞð1� t2Þþ4tð1� rÞ�ð1� tÞ 7

r

�
þ12�15r

��
n

� 1

64
403

�
þ21

rt

�
� 57

128

1

r2

�
þ1

t
� t

r2

�
� 1

128

97

r

�
�15

t2
þ15r

t2
�75r

t
�195t

r

�

þ43r
8

þ19t
4

þmð4�3r� tÞ�141rt
32

�
1

DðnÞ ;

A�
3ðn; r; tÞ ¼

1ffiffiffiffi
rt

p e�nð2�r�tÞ ð1� rÞð1� tÞ
r

n



þ 1

8

�
� 3

rt
� 3

r2
þ 15t

r
þ 12m þ 3� 6t � 16mt � 8

r
þ 3

t
þ 3t

r2

��

� 1

DðnÞ ;

A�
4ðn; r; tÞ ¼

1ffiffiffiffi
rt

p e�nð2�r�tÞ


� ð1� rÞð1� tÞ

r
n þ 1

8

3

rt

�
þ 3

r2
� 15t

r
� 20m þ 5þ 6t þ 16mt þ 8

r
� 3

t
� 3t

r2

��

� 1

DðnÞ :
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