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Abstract

This paper contains an analysis of the stress distribution in a long circular cylinder of isotropic elastic material with a
circumferential edge crack when it is deformed by the application of a uniform shearing stress. The crack with its center
on the axis of the cylinder lies on the plane perpendicular to that axis, and the cylindrical surface is stress-free. By
making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair
of singular integral equations. This pair of singular integral equations is solved numerically, and the stress intensity
factor due to the effect of the crack size is tabulated. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Problem of determining the distribution of stress in a long circular cylinder containing a penny-shaped
crack has been investigated by relatively many writers. We can list works by Collins (1962), Sneddon and
Tait (1963), Sneddon and Welch (1963), Tchuchida and Uchiyama (1980), Dhaliwal et al. (1979), Ban and
Zhang (1992), Loboda and Sheveleva (1995), and Wang (1996).

However, solutions to the problem concerning an edge circumferential crack in a long circular cylinder
are relatively few. Keer et al. (1977) considered an infinitely long isotropic circular cylinder with a cir-
cumferential edge crack subjected to tension, whereas Atsumi and Shindo (1979) considered the same
problem when the cylinder is of transversely isotropic material. All of these investigations concerned with
axisymmetric problems, however, little attention seems to be given to the asymmetric analysis concerning a
long circular cylinder. The recent analyses by Lee (1997, 1999) investigated the asymmetric problems in-
volving a long cylinder.

In this paper we derive the solution of the problem determining the distribution of stress in a long
circular cylinder of elastic material (Fig. 1), whose surface is stress-free, when it is deformed by the ap-
plication of the shearing stress at the end of the cylinder which contains a circumferential edge crack
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Fig. 1. A long circular cylinder with circumferential edge crack subjected uniform shearing stress.

situated with its center on the axis of the cylinder and its plane perpendicular to that axis. An analogous
problem concerning a penny-shaped crack has been considered by the present author (Lee, 2001).

Radial shear problem has been considered in Kassir and Sih (1975) for the infinite elastic medium and by
Danyluk et al. (1991) for the cylinder of finite radius of transversely isotropic medium. Such radial shear
would, in real life situation, be difficult to realize, whereas the uniform shear problem such as the present
one can be examined experimentally fairly easily.

In Section 2 general equations and formulation of the problem are given, and in Sections 3 and 4 by the
use of the stress and displacement fields, and employing Fourier transform, a pair of singular integral
equations is derived. And finally, a numerical example is given and quantities of physical interest are
obtained.

2. General equation

Consider a circular cylinder of the radius ¢ having a circumferential edge crack whose inner radius is
equal to a. We take the center of the crack as the origin of the cylindrical coordinates, (r, ,z) and the axis
of the cylinder to be z-axis. The central plane of the crack is taken to lie on the plane z = 0. Suppose that the
cylinder is subjected to a constant shearing stress at the end. By introducing an appropriate function, we
can convert the problem to a mixed boundary value problem where the crack is subjected to a uniform
shearing stress while all stresses at the ends vanish. For instance, taking = Crz in (2.10) in the subsequent
page, we see that this function produces no stresses except uniform shear stresses. Adding this function to
the potential function leads us to the goal.
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It is considered on the surface z = 0, the crack is subjected to a uniform shearing stress S in the 0 = -
direction. Interior to the circle the surface displacements u, v are zero; the surface z = 0 is assumed to be free
from normal tractions. Then the problem determining the distribution of stress in the vicinity of the crack is
equivalent to that of finding the distribution of stress in the semi-infinite cylinder z > 0, 0 <r< 1. The
boundary conditions for the present problem can be mathematically stated as follows:

Onz=0: 7.,=S8cosl, a<r<l, (2.1)
T = —Ssinf, a<r<l, (2.2)
g.=0, 0<r<l, (2.3)
u=0, 0<r<a, (2.4)
v=0, 0<r<a, (2.5)
Onr=1: 1.=0, (2.6)
T = 0, (2.7)
g, =0. (2.8)

If we introduce biharmonic and harmonic functions @, and , so that
Vi = Vi) =0,

then the needed components of the displacement vector in terms of them are expressed by the equation
from Muki (1960, p. 403)

20 20y
T ooz r o0’
2.9
_ Po oy (2.9)
ro00z or’

and the stress field is given by the equations,

o 0 _, Rb\ 23 20y
o _° o\, 22¥ 2%
2 62<vv 6r2>+r606r 200
9 _0( gy 102 _ 100\ 20y 20
2u Oz ror 12 op? r 000r 12 00’
o. 0 , O
i o) (2.10)
= _ 9w 22
2/1_6}’{(1 > }+raeaz’
w_ 0 [ ywve 221 OV
2u o0 {(1 A 0z2 ordz’
w_ O (@ 0P\ Y Y
2u  ro0dz\ r  Or ort 02’

where p is the modulus of rigidity, and v is Poisson’s ratio. In addition to (2.9) and (2.10), for the solution of
the present problem we need more expressions for the displacements and stresses. This can be obtained
from Lee (2001).
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The displacement vector is found as

B of+g oF
u=-2(1-v 2 cosH—i—za—,
_ o(g —f) 1 oF
U—-Z(l-v) aZ Sln9+2—@
oF
_(1 _ZV)F+Z§,

where f(r,z) satisfies
o*f 1 af o*f
o2 t r or Tz 0z2

and g(r,z) satisfies

g 1og 4 g _0

=0

o2 ror 2 o2
and
F= of += 0 += 2g cos 0, V2F = 0.
o or
The components of stress tensor are
o, P(f +2) oF O°F
ﬂ——Z(l—v)WCOSO 2Va—+Za2,
o. OF
2u o2
To 0 of OJg 2g 0 [10F
2u (1 v)62< 6r+6r r Sm0+26r r o0 )’
T *(f +g) oOF O*F
Z——(I—V) o2 COSH—‘FVa-'—Z%,
. Pg—1) 10F 1 &°F
—=—(1- . 0+v——+z— .
T S = L il Rty

3. Derivation of integral equations

(2.11)

(2.12)

(2.13)

(2.14)

In this section we derive a pair of singular integral equations. For this purpose we use the displacement
vector obtained by adding (2.9) and (2.11). For the stress field we add (2.10) and (2.14). Suitable functions

for f, g, @, and s are chosen to be

f(r,z):i /0 Ea(E)y(Er)e = de,
g(r2) :i /0 " BB (e de,

0(r,0.9) =5 [ {A@(E) + BEO(E) cos Ezdécoso

(3.1)

(3.2)

(3.3)
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l,b(r,(),z):i/o C(&E(&r)sin ézdEsin 0, (3.4)

where J, J, are the Bessel function of the first kind and I;, I, are the modified Bessel functions of the first
kind. With these choice of functions, we see that condition (2.3) is automatically satisfied.
On z = 0, we have

u 1—v

cosl

/ ((EW(r) + BV} de, (3.5)

and, we also have

= / (= &Wo(Er) + B(E(Er)} de. (3.6)

If one defines

K 0/ u v\ [rilg(r), a<r<l
2(1—v) or (cosH 51n0)_{ 0, 0<r<a (3.7)
then «(&) is determined as
1
20 = [ s (38)

Similarly, if one defines

B O, u v | rh(r), a<r<1
2(1—v)6r{r(0050+sin9)}_{ 0, 0<r<a (3.9)

then f(¢) is determined as

pe = [ wiosn e, (3.10)

Now 1,, on z=101is

cos@ / {a(&)o(Er) + B(E)( ”)}dé‘F;/Ox{a(é)+ﬁ(f)}J1(57)df

+ [Telaof (U e )nen + - 2nen)

+ B(i)é{lz(ir) +éll(ér)} + C(é)ézl(@)}dg =S, a<r<l. (3.11)

If we use (3.8) and (3.10) in (3.11), we obtain following singular integral equation for determining g(¢) and

h(t):
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2 /! v ! (v—2) (!
= [ et - e de+ [ gmtrndes "2 om0

s [Teao (s ar)nen + 0 - 2nen)

+ B(é)f{]z(fr) +éll(£r)} + C(é)éll(ir)} dé=S, a<r<l, (3.12)
where
- E(), r<t,
R(r,1) =9, LEW K, et (3.13)

(Here K and E are complete elliptic integrals of the first and second kind, respectively) and Hj(r,?) is
defined by

H]] rt fO S

(€
2,22F'1<27272;

i (
2
2

) =%[K(f) ~E(), 1<r (3.14)

2,22171(2;2727:;)*;[K(§)_E(§)]’ r<t

Similarly from (2.2), we have now 14, on z = 0 as follows:

sind

s _ (] y) / (ol &Va(Er) + P(E)(er) e — / (&) + BV (Er) de

__/ EAO{2(1 =L (Er) + &rhL(En} + B(EEL(Er) + C(O{erhL(&r) + L1 (Er)}]dE = =S, a<r<]1.
(3.15)

If we substitute (3.8) and (3.10) for o and f into (3.15) we obtain another singular integral equation for
determining g(¢) and 4(¢):

=02 [ e+ norade+? oo U2 [iomie.

- / MA(O2(1 = )1 (&r) + &r(Cr)} + B(E)Ch (Cr) + C(EO{&rh(Cr) + L (Er)}dE = =S, a<r<1.
(3.16)

Substituting (3.8) and (3.10) into (3.5) and (3.6) and using condition (2.4) and (2.5), the following additional
condition is obtained.

/1 t'g(t)dt = 0. (3.17)

4. Conditions on the surface of the cylinder

We now complete the solution by satisfying the boundary conditions on the surface of the cylinder. It is
easily shown that the value of 7,. on the surface » = 1 is given by the equation
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r,zcl 590 / EN{2(1 = I (€) + EL(E) — L(E)YA(E) + EL(&)B(E) + éll(é)C(é)] cos &zd¢
+ /OOC[“(”){—WOW) + (1) + 27 ()} + B {=nT2(n) + vJi(n) = 27} (n) Ye ™™ dn.
(4.1)

Boundary condition (2.6) can be written in an alternative form as
F o[r=(1,0,2);z — & = 0. (4.2)
From which, we obtain

{21 = VI(E) + ER(E) — BENA) + ET(OBE + 1O

(1) {(v—w wh(n) o, wh(n) wm) }

g S4n (@4 (E+p)

o A (v=1) i) i (n)
o W{ 2(52+nz)2+ & «:2+n2+2<52+n2>2}]d"' “3

Therefore if we substitute a(y) and f(y) from (3.8) and (3.10) into (4.3) and make use of formulae in
Appendix which are obtained from Erdélyi et al. (1954), we obtain one equation connecting A(&), B(¢),

C(¢) and g(1), A(2),

{201 =)+ E)N(E) + (1 = 2v)ENL(E)A(E) + E{N (&) + EL(IB(E) + L(EC(E)
= —{(& + v+ DKi(&) = EK(E) () + { =K1 (&) + EKAE) (&) +{(3 — v+ E)Ki (&) — K &)}k (9,

(4.4)
where
(=2 [ sona
70=2 [ o) - nopenen (43)
2 1
K0 == [ honenar
Next, 7,9 on the surface » = 1 is given by the equation
Ml = [ e - 8@ + { - ) + 300 po@lsinesa:
/0 () { (X = v)nsi(n) — zna(n)} + B (1 = v)[nJ1(n) — 412(n)] + znJ2(n) He™™ dn.
(4.6)

The boundary condition (2.7) can be written as

Flto(l1,0,2);z — € =0. 4.7
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From which we obtain

{ L+ %12@)}/1(@ CL(OBE) + { L)+ %b(f)}c(é)

_ 2 5 (I—v) nhi(n) 2 n*(n) B 1—v
= ﬂ/o [(’7){ E P21 é(éernz)z}ﬂLﬁ(”I){[’IJl(’I) 4J2(n)]—f(52+ﬂ2)

2
S H v 9
If we substitute from (3.8) and (3.10) into (4.8) and make use of equations in the Appendix, we obtain
{=¢h(8) +20(8)}4(S) — EL(EB(E) +{—E¢h (&) +2hL(8)FC()
= veK1(§)i(€) — Ka(£)/(&) = {(2 = v)eKi(&) + 4(1 — v)K3 (&) }k(E)- (4.9)

Finally, ¢, on the surface » = 1 is given by the equation

o /Oxé{{(zvl)ll(é) <£+%>12(f)}/1(5)51;’(5)3(5)%12(5)(:(5) sin ézdé

cosO

+ [ " (=201 (1) — =P ) + ()}

+ B {201 (n) — 4(1 = v)a(n) + z[=1J1 () + nJ2(n)]} e dn. (4.10)
Boundary condition (2.7) can be written in an alternative form as
Flo.(1,0,2);z — & = 0. (4.11)
From which we obtain
{(2v - Dh(¢) - (5 + %)Iz(é)}fl(@ =& (&B(E) - %Iz(é)C(é)
P nin) 2 nw’hn) nJi(n) 4l —v) L)
== —2 _z 2 _
x /o l“("){ ) L) } - B("){ “Ean) T Bar
2 i h(n)
- dn. 4.12
+5(52+172)2H n (4.12)

If we substitute from (3.8) and (3.10) into (4.12) and make use of equations in the Appendix and their
derivatives, we obtain

{(2v = 1)EN(8) — (&€ +2)L(E)}A(E) — E{EN(E) — h(&)}B(E) — 2L(E)C(¢)
= HK1(&) — EKa(E)}i(E) + {EKi (&) + Ka () }(E) — {EKi (&) — (4(1 —v) + VKo (E)}k(E).  (4.13)
Now, if we solve (4.4), (4.9) and (4.13) simultaneously for unknowns A(¢), B(¢), and C(&), we find that

) )
A(¢) = —Ilill—F]zé[léA(é)]z l(f)—ll(ég(ié)lz)](é)_k Ij_ll_

57 (€ + 401 =) =223} k(&)
(4.14)
where I} = I,(¢), L = L(¢), Ky = K, (&) and
A(E) = ERAERL + LE{E —2(1 +v)} — 281 — &1))
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and
£B(E) = | - 2+ g (- B+ RB201 e - ) i)
Ki | 2(1 =)+ LL(2y—2+ &) —2e37 .
[‘n* A(Z) }’ ©
+ [2\)1]{—11 +ﬁ {41 —v) + &) = LL{2(1 +v)& +8v(1 —v)} + 4vé[22}}k(£), (4.15)
and

@) =(1-v) [{ naE }i@) -+ {’f—j+ﬁ(8mz _aer 4 zaf)}k@], (4.16)

In obtaining (4.14)—(4.16), we used the equation

Ky (ONL(E) +Ki(§Rh(E) =

O] o=

Therefore, if we substitute 4(&), B(¢) and C(¢) from (4.14)—(4.16) into (3.12), we finally obtain following
singular integral equation

% /al{g(t) — h(t)}R(r,t)dt + /alg(t){:Hll(rv 1) +Ki(r, t)}dt

—|—/1h(t){v_2H11(r,t)+K2(r,t)}dt:S, a<r<l. (4.17)

7

Similarly from (3.16), we obtain another singular integral equation for determining g(¢) and A(¢):

—(1-w2 [ e nenrenas [ e0f L) - Ko ar

—l—/]h(t)[(v:z)Hn(r,t)—K4(r,t)} dt=-S, a<r<l (4.18)

The detailed expressions of kernels K;(r,¢)(i = 1,...,4) are listed in the Appendix.

The problem is now reduced to the solution of (4.17) and (4.18) under the additional condition (3.17)
which is a trivial condition for the result to be determined because it merely refers to the rigid displacement
of u and v.

Quantities which are of interest in fracture mechanics are the stress intensity factors defined by the
relations

ky = lim \/2(a —r)1..(r,0,0), (4.19)
ky = lim \/2(a — r)74.(r, 0,0). (4.20)
We let
d d
r=S=D+1, 1=5E-D+1, (4.21)
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where d = 1 — a, and in order to facilitate numerical analysis, assume g(¢) and A(¢) to have the following
form:

gt) =S FG(t ,/ H (4.22)

With the aid of (4.21), g(r) and A(z) can be rewritten as

1-1\} 1-1\}
g(t) = 8G(1) <1 n ‘c) , h(t) = SH(7) <1 n r) . (4.23)
The stress intensity factors k, and k; can therefore be expressed in terms of G(¢) and H(¢) as
= V2d{G(a) — H(a)}S cos 0/a, (4.24)
ks = —V2d(1 — v){G(a) + H(a)}Ssin 0/a. (4.25)

Crack opening displacements, given by integration of (3.7) and (3.9) are

" M:—/ t—lg(t)dz+lz/ th(t)dr, a<r<l,
a r a

1—v cosf

pv(r,0,0)
1—v sin0

r 1 r
:/ f'g(t)dt+ﬁ/ th(t)dt, a<r<l1.

5. Numerical analysis

In order to obtain numerical solutions of (4.17) and (4.18), substitutions are made by the application of
(4.21) and (4.23) to obtain equations of following forms

1 3
d / (1 — T) [G(7)P(s,7) + H(1)Qi(s,7)]dr =1, —-1<s<l (i=1,2). (5.1)
n ) \1l+7

The numerical solution technique is based on the collocation scheme for the solution of singular integral
equations given by Erdogan et al. (1973). This amounts to applying a Gaussian quadrature formula for
approximating the integral of a function f(r) with weight function [(1 —1)/(1 4 1)]"/* on the interval
[—1,1]. Thus, letting n be the number of quadrature points,

VSR 2 &
=_" 1 - 2
[ (155) r@de 5755 0 - wrte, (52)
where
2km
fkcos<2n+1>, k=1,...,n. (5.3)
The solution of the integral equation is obtained by choosing the collocation points:
2i—1 .
sicos<2n+1>n, i=1,...,n (5.4)

and solving the matrix system for G*(t;) and H*(z;):

S 16" ()P m) + H (@)@ m] = 250t =1 n (= 1,2) (55)
k=1
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where
G (1) = G(zp) (1 — 74), H (1) = H(t)(1 — ). (5.6)

It can be shown that as both 7, ¢t approach 1, the kernels K;(r,¢), (i = 1,4) in (4.17) and (4.18) become
unbounded and hence influence the singular nature of the solution. Thus, if K;(r, ¢) in Appendix B are, for
the brevity of notation, written as

2 o0
Ki(r,t) :—/ k(& rnde (i=1,...,4),
T Jo
the unbounded terms in K;(7, ) will be the consequence of the asymptotic behavior of &;(¢&, 7, ¢) for £ — oo.
Thus, subtracting and adding the asymptotic value of k;(&, 7, ¢) from and to the integrand in the above
equation, we have

Ki(r,t) = p / {ki(&,r,t) — A; (&, r 1)} dE —&—; / A7 (& r,1)dE, (5.7)
0 0
where
e—¢-r-1) ,
A?(éh t) = 7{%(7’ t)‘f + ﬁi(r7 I)é + ?[(77 t)}’ (58)
Vit
and
* 1 2, B o
A (Er)dE =— + ! + ! . 59
/o (ernde \/i’_l{(Z—r—t)3 2—r—1) (Z—V_t)} 9)
The form of «;, f;, and y;(i=1,...,4) comes from the leading terms in the asymptotic expansion of

k;(&,r,t) and these are listed in Appendix C. Three terms are retained in the asymptotic forms of the Bessel
functions which are used to obtain these values. It is quite onerous work to produce these values. Math-
ematica is used for this job.

We list in Table 1, the results of subtracting none, one, two, or three of the leading terms in the
asymptotic form of the integral. Here we only consider the semi-infinite integral in K| (7, ¢). The values of
r, and ¢ shown here are those of the nearest values to 1 used in the evaluation of the integral.

If d approaches to zero, from the asymptotic expansions of K;(r,¢) in Appendix C, (4.17) and (4.18)
reduce to the following pair of decoupled singular integral equations.

1 /! 1 T—3 4(1 —=5)(1—1) B
. {g(f)—h(f)}{s_ﬁ(Z_T_S)ﬁ P }dr—s, (5.10)

(o0 + 1@ s (5.11)

Table 1
Sample behavior of semi-infinite integral evaluation when none, one, two, or three of the leading terms in the asymptotic form of
integrand in K, (r,¢) are subtracted. » = 0.9999853, and ¢ = 0.9959520 are the values to produce these data

Zero-term One-term Two-term Three-term

Asymptotic part 0 1.7739 —122.4279 —120.9037
Gaussian quadrature 0.3323 2.1062 —121.5591 —120.0116
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Table 2

Stress intensity factor (v = 0.3)
d i i3 /Vd Keer et al.
0.001 1.1225 —1.0017 1.1224
0.05 1.1367 —1.0569 1.1513
0.1 1.1619 —1.1053 1.1807
0.2 1.2452 —1.2133 1.2608
0.3 1.3806 —1.3604 1.3904
0.4 1.591 —1.577 1.597
0.5 1.924 —1.916 1.932
0.6 2.487 —2.482 2.502
0.7 3.554 —3.551 3.598
0.8 6.063 —6.062 6.201
0.9 15.772 —15.771 16.46

Where k, = ky/Scos b, i3 = k3 /S sin 6.

Eqgs. (5.10) and (5.11) are exactly the solutions of the edge crack problem of a half space for x > 0, when the
edge crack occupying 0 < x < 1, —oo < y < oo on the plane z = 0 is subjected to the shearing stress while
the plane boundary x = 0 is stress free. Each equation gives 1.122 and —0.9996 for SIF.

In Table 2 stress intensity factor is listed for v = 0.3. We list only for v = 0.3 here, because the variation
of SIF with respect to v is very small. We compare SIF with that by Keer et al. (1977) for the cylinder
subjected to tension. From these values we notice that the K values when the cylinder is subjected shear
stresses do not differ very much from the values for the uniform tension. Also we notice that the results for
d — 0 are in excellent agreement with the analytically obtained limiting value of 1.122.

Figs. 2 and 3 show the crack opening displacements defined by

() :_/arG(t)(l —t)l/z(t—a)l/ztldt—i—riz/arH(t)(l —t)'”(t—a)’”ztdt=u(cr(’,§},0) a _MV)S’

o /r - _t)l/Z(t_a)fl/Zt—ldt_’_rlz /FH(t)(l — 0" (t—a)Prdr = v(:i,f,eO) i _ﬂv)S'

for the crack depths d =1 —a of 0.9,...,0.1. The maximal displacements d(1) are given in Table 3.

0 0.2 0.4 r 0.6 0.8 1

Fig. 2. Crack opening displacement (v = 0.3).
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9
8 -
7 L
6 |
dn) 4 |
4+
3 |
o b
1 /—/f
0 f : . -
0 0.2 0.4 0.6 0.8 1
r
Fig. 3. Crack opening displacement (v = 0.3).
Table 3
Maximal crack opening displacement for different crack depth (v = 0.3)
d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
di (r) —0.150 —0.316 —0.512 —0.756 —1.080 —1.547 —2.297 —3.744 —7.847
dy(r) 0.157 0.337 0.547 0.804 1.140 1.616 2.374 3.828 7.937

6. Conclusion

In this paper, the problem of determining the distribution of stress in a circumferentially edge cracked
circular cylinder which is subjected to uniform shearing stress is considered. This problem does not appear
to be investigated previously. As a consequence we were unable to compare the numerical results with any
published accounts.

However, comparing present results with the values for uniform tension, we see that the two values are
very close. Notifying that the stress intensity factors for the semi-infinite plate with an edge crack are
identical for uniform tension and shear stress, we believe that the present results are accurate.

The present analysis can be applied to the stress analysis of cranks, axles, and even pillars or supporters
of architectural structures when there are frequent seismic activities.

Appendix A
/ooo %de =N(ENKi(E), <1,
[ gy ok, o<
I %d” = G (EKE) ~ E(EKIE), 1<,
/OOO %)jzgz)d" = 2%2[5112(&)1(1(5) —EL(EDK(E)], t< 1,
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Appendix B

ki) =2 [ Em0.8) + n(eomr 0)de,
Kalri) =2 [ &m0, €) - n(Emlr )¢,
Kl =2 [ om0 € + nn(eopsr )¢,

Kulr) =2 [ Eln(Enpln &) - enenps(r 9)de,
where

pi(r,€) :II(;}”) a;(&,r) + L(Ebi(E), (i=1,...,6)

with
1
I

a(&r) =~ v ER) 1 L e - )R — eh/n)/ A,

ar(Er) = —’f—: C(LE = 2B)(ER — L1/ A,

as(&,r) & (B—v+ &)+ (—48LL + 223 —)E+ IPE + Er{—LL(E + 4 — 4v) + 212¢}) /4

and a4, as and a¢ are obtained from a;, @, and a3 respectively by deleting &2,
K
bi(&) = = -+ (-RE + hDh3E — 2%L)/ 4,
1

ba(&) = —],ij (e L& - 2v) - 2L1)/ A,

by(&) = Sy (PE(4— 4y + &) + Lh(dv — 4 — 38 1+ 261)) A,

o

A
K

by(é) = —ZV +¢L(1¢E—2vD) /4,

b5(§) = —11([15 — 2V12)/A,

be(&) = 5= (2 =) + (IFE4(v = 1) + hL(4 — 4y = &) + 282 = W)[3) /4

and 4 = A(&).
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